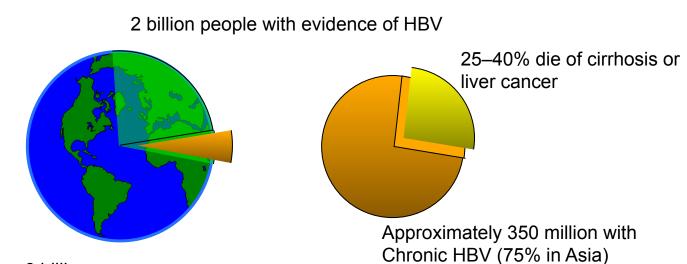
HBV Cure – Definition and New Drugs in Development

Harry L.A. Janssen

Francis Family Chair of Hepatology Director Toronto Centre for Liver Disease University Health Network University of Toronto, Canada

HBV Cure Meeting November 2016 Boston

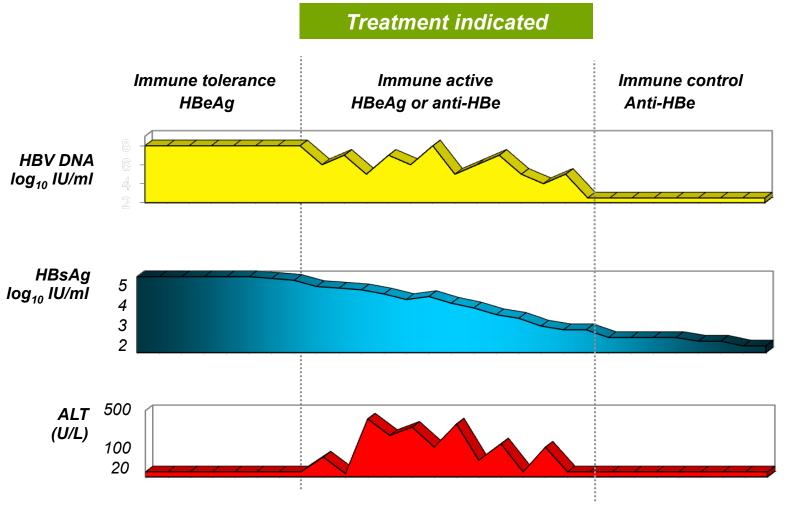
GRANTS


AbbVie, Bristol Myers Squibb, Gilead, Innogenetics, Janssen, Medimmune, Merck, Novartis, Roche

CONSULTANT

AbbVie, Arbutus, Benitec, Bristol Myers Squibb, Eiger Bio, Spring Bank Pharma, Gilead, GSK, Fujirebio, Ionis Pharmaceuticals, Janssen, Medimmune, Merck, Novartis, Roche

HBV – A Global Health Problem



World population 6 billion

First Line Treatment: Tenofovir, Entecavir and PEG-IFN Majority of patients not diagnosed

> TORONTO CENTRE FOR LIVER DISEASE

Natural history of CHB

New drugs: Is risk/ benefit different depending on therapy, age of patient or phase of disease? Do different phases need different therapies?

LIVER DISEASE

Janssen, et al. Gut 2012

The decision to treat is historically based on phase of disease and risk of disease progression

Phase	Immune tolerant	HBeAg- positive CHB	Inactive carrier	HBeAg- negative CHB
HBeAg status	Positive	Positive	Negative	Negative
HBV DNA	Very high >200,000 IU/mL	>2000 IU/mL	<2000 IU/mL	>2000 IU/mL (fluctuating)
ALT	Normal	Elevated	Normal	Elevated (fluctuating)
Liver histology	Normal or mild inflammation and limited fibrosis	Inflammation and fibrosis: degree varies	Normal or mild inflammation	Inflammation and fibrosis: degree varies
Disease progression	Low	Moderate to high	No, very low	Moderate to high
Treatment	Not indicated*	Indicated	Not indicated	Indicated

* Treatment indicated in some patients

EASL HBV Guidelines, J Hepatol 2012;57:167–185; EASL special HBV conference, J Hepatol 2015;63:1238–1253

Key Considerations for Current Treatment Options

- HBV nucleos(t)ides are highly effective and generally well tolerated, but with low rates of successful discontinuation
- Long-term nucleos(t)ide-analogues reduce cirrhosis, liver failure and HCC; safety remains to be determined but appears very good
- PEG-IFN monotherapy is finite but only effective in subgroup of patients and its use is limited due to toxicity
- Thus, unlike in HCV drug development there is effective and safe therapy available which suppresses HBV

Why is Finite Therapy a Goal for HBV Treatment?

Younger patients may find lifelong treatment hard to accept Women who want to become pregnant

Patients reluctant to start treatment

Working days lost to hospital visits

Cost savings to healthcare system Long-term adherence issues

> TORONTO CENTRE FOR LIVER DISEASE

Important Issues for HBV Drug Development

- Low vaccine uptake in adults
- Still many CHB undiagnosed
- Many countries cannot provide long term therapy to patients with CHB
- Unapproved Combination drugs have been studied for HCV, NAFLD and HBV

What can be considered as a defined cure?

Virological cure

- elimination of cccDNA
- Iowering or silencing cccDNA
- Undetectable HBV DNA in serum
- Off-therapy HBsAg loss

Disease cure

- No risk of progression to liver faillure or HCC
- Identifiable by clinical parameters, biomarkers or gene signatures

Is HBV Treatment Paradigm Changing?

Current PARADIGM

- Indefinite Treatment
- Poor off-Rx response
- Reduces overall mortality
- Reduce but does not eliminate the risk of HCC
- Potent NAs :suppresses viral replication but <u>cannot</u> cure the disease

New PARADIGM

- Finite treatment duration
- Sustained off-Rx response shift towards endpoint of true immune control &HBsAg seroconversion
- No increased risk of mortality and HCC
- New HBV treatments with increased chance of curing disease

Defining HBV Cure

Functional cure

Associated with clinical benefit (disease progression and HCC)

Off-therapy sustained HBV suppression and disease remission

HBsAg serocnversion and cccDNA inactivation/reduction

Risk under immunosuppression

Feasible

Complete cure

Associated with clinical benefit (disease progression and HCC)

HBsAg seroconversion and cccDNA eradication

Feasibility very uncertain

Zeisel, Lucifora et al, Gut 2015; Revill et al, Nature Reviews Gastroenterol Hepatol 2016

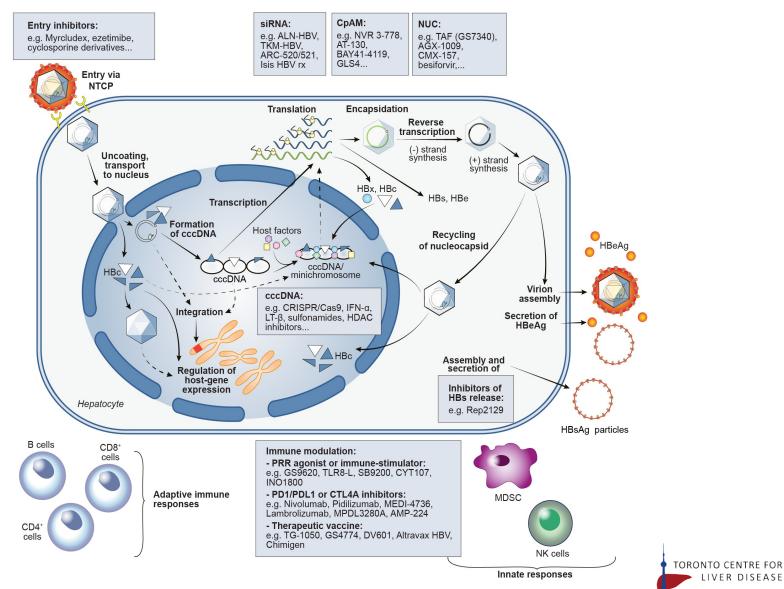
Survey: Surrogate for HBV cure (true/false)

Best endpoint for HBV cure			
HBsAg seroconversion	61 (92.4%)		
HBsAg loss	43 (65.2%)		
HBsAg decline	22 (33.3%)		

Survey AASLD/EASL HBV Treatment Endpoints Workshop: respondents n=66 about 45% academic, 45% industry, 10% rest group

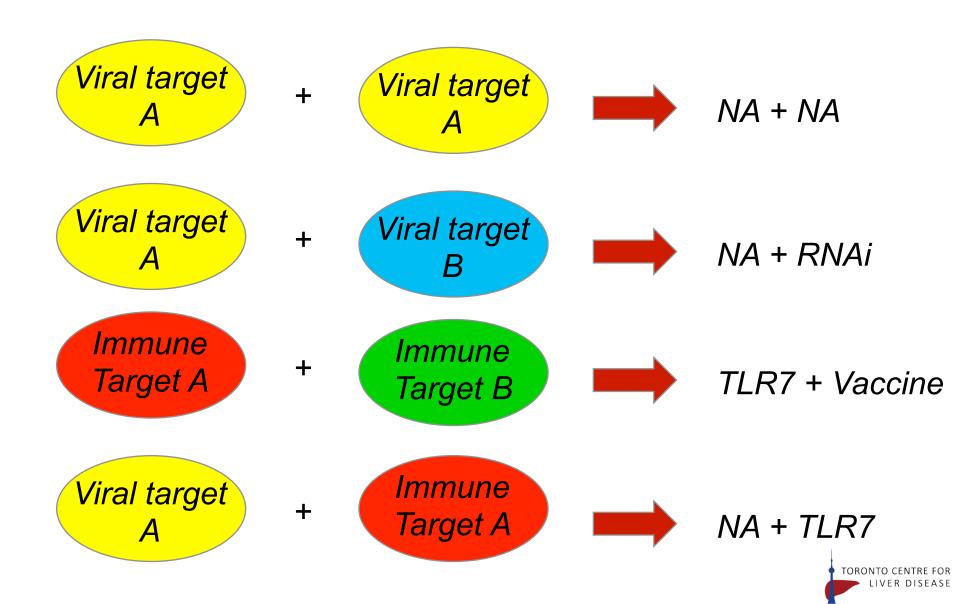
Approaches to Therapy

Viral targets - DAA


- Viral entry
- cccDNA formation/ transcription/degradation
- RNA intermediates
- Encapsidation
- DNA replication
- Assembly
- Release

Immunomodulators

- Innate immune response
 - IFN
 - TLR agonists
 - RIG-I agonists
- Adaptive immune response
 - Anti-antagonists (checkpoint inhibitors)
 - Vaccination


HBV cure – Compounds in Development

LIVER DISEASE

Testoni & Zoulim, Hepatology 2015; Durantel & Zoulim, J Hepatol 2016

Combination Approaches

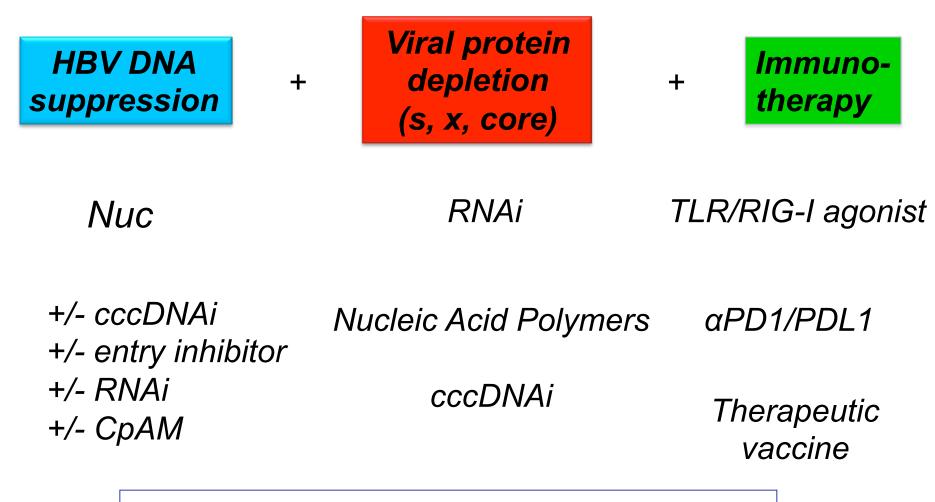
Multiple Viral Targets

Pros

- More profound suppression
- •Higher barrier to resistance
- not necessary with nucs
- •Reduce immunosuppressive effects of HBV
 → combo 4
- •Safety in context of nuc suppressive therapy

Cons

- •Same target only as good as most potent
- •May be hard to assess efficacy
- •No synergy...or even antagonism?
- Safety



Viral + Immune Target

- Appears attractive option
- HBV impairs innate and adaptive immune function
 - Viral replication
 - Viral protein production
- Viral inhibition → improve immune function and responsiveness
- Immunotherapy the knock-out punch!

Attractive Combinations

May not need all 3 'classes'...mix and match

TORONTO CENTRE FOR

Current endpoints in HBV treatments

Biochemical: Virological: Serological: Histological:

Combined:

ALT normalization HBV DNA decline/undetectability HBsAg/HBeAg loss/seroconversion Reduction of necrosis, inflammation, fibrosis Most often HBeAg, HBVDNA and ALT

Endpoints: Key considerations

- What surrogate markers of efficacy to monitor success: Immunologic, Virologic, Pathologic?
- Phase 2 or 3 studies
- Primary & secondary endpoints
- Antiviral vs. immunomodulatory drugs
- Treatment naive vs. virally suppressed patients
- Timing of endpoint assessment: on- or offtreatment
- Efficacy criteria for further development of drug

Clinical trial phases

Phase 1 Safety	Phase 2 Efficacy & Safety	Phase 3 Efficacy & Safety	Phase 4 Post- marketing
20-100 volunteers	100-200 patients	500-2000 patients	
Phase 1a Safety of single ascending dose	Phase 2a Optimal dose	Comparison to standard of care	Safety surveillance in 'real-life' patients
Phase 1b Safety of multiple ascending doses	Phase 2b Efficacy prescribed dose		

Pharmacokinetics & pharmacodynamics

Experimental HBV treatment in naive vs virally suppressed patients

Treatment Naive

Younger

Active Disease

HBVDNA can be used as a biomarker

No resistance

May be more likely to accept finite therapy

Suppressed

Have safe and effective therapy with reduction of HCC and improved survival

Partial immune restoration may benefit immune modifying therapy

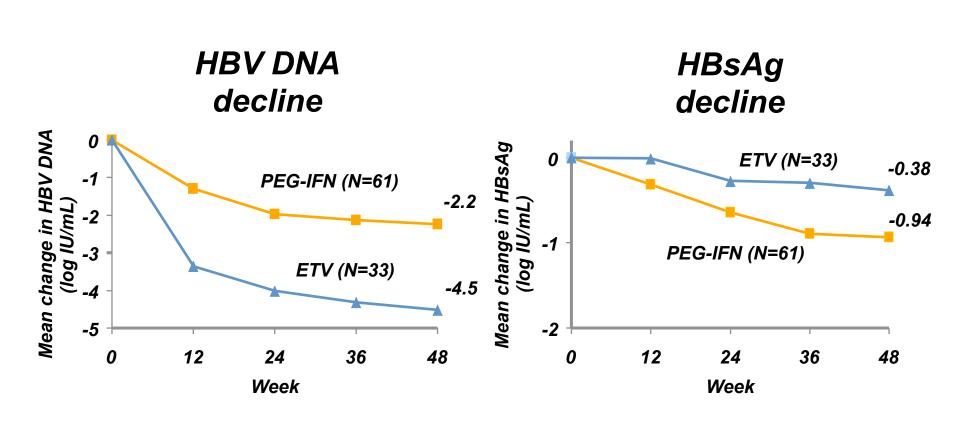
Potentially better protection against flares

May have more objections to accept experimental therapy

Endpoint differentiation based on treatment modality?

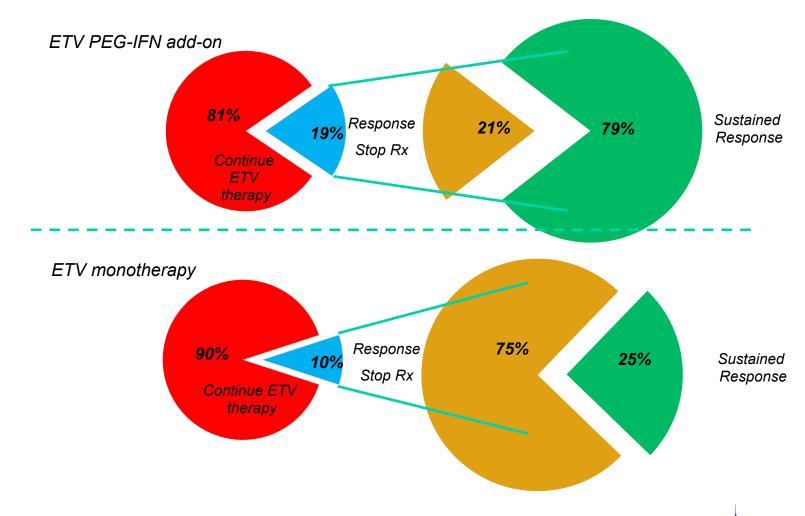
In principle, rather not:

- All HBV treatments aimed at common clinical goal
- Association with clinical endpoint is essential


But:

Different mechanism of action \rightarrow different response durability

HBsAg loss with immune modifying treatment vs. viral treatments such as RNA interference


Different validated endpoints could be used for different treatments in phase 2 studies (proof of concept) also because drugs with different MOA and endpoints could potentially be combined into one regimen

HBeAg (+) patients: More HBsAg decline with PEG-IFN than ETV

Reijnders et al. J Hepatology 2011

Sustained Response: ETV Peg-IFN add-on vs. ETV ARES Study

Response: HBeAg loss, normal serum ALT and HBV DNA <2000 IU/mL

TORONTO CENTRE FOR LIVER DISEASE

Brouwer et al. Hepatology 2015

Endpoint differentiation based on clinial study phase?

Phase 2a, b

Proof of concept Dose finding Safety very important On- and off-treatment efficacy

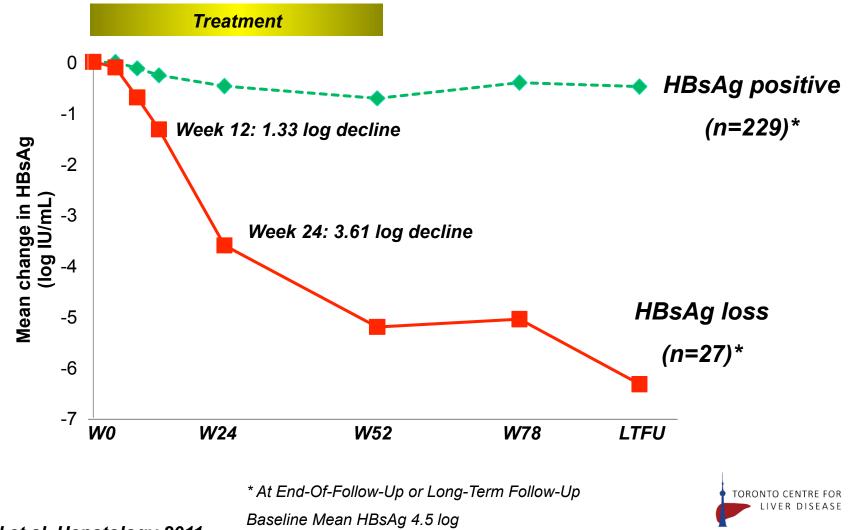
Phase 3

Aim is functional cure Comparison to standard treatment Sustained response off-treatment

Survey: Primary efficacy endpoints for phase 2/3 trials aimed at virologic cure

	Antiviral therapy		Immunomodulatory therapy	
	Phase 2 Rank	Phase 3 Rank	Phase 2 Rank	Phase 3 Rank
Serum HBV DNA undetectable	1	2	1	2
Sustained decrease in HBsAg level by >1 log ₁₀ IU/mL off treatment	2	3	3	4
HBsAg negative	3	1	5	1
Maintained decrease in HBsAg level by >1 log ₁₀ IU/mL on treatment	4	5	4	7
Anti-HBs positive	5	4	6	3
Restoration of T cell response to HBV antigens	N/A	N/A	2	5

Survey AASLD/EASL HBV Treatment Endpoints Workshop: respondents n=66 about 45% academic, 45% industry, 10% rest group


Survey: Prediction of HBsAg loss

Assuming HBsAg loss is reliable surrogate for cure what is the desired response in phase 2 and 3 studies on antiviral and immune therapies to move to the next phase?

Antiviral & immunomodulatory therapies			
	Phase 2	Phase 3	
HBsAg level decrease by >1log ₁₀ IU/mL in >50% participants	31 (47.0%)	12 (18.2%)	
HBsAg loss in >10% participants	18 (27.3%)	21 (31.8%)	
HBsAg loss in >30% participants	17 (25.8%)	33 (50.0%)	

Survey AASLD/EASL HBV Treatment Endpoints Workshop: respondents n=66 about 45% academic, 45% industry, 10% rest group

HBeAg positive CHB: PEG-IFN α -2b HBsAg decline in those who achieve HBsAg loss

Sonneveld et al. Hepatology 2011

Survey: When should primary efficacy endpoints be assessed in phase 2/3 trials aimed at HBV virologic cure?

	Antiviral therapy		Immunomodulatory therapy	
	Phase 2	Phase 3	Phase 2	Phase 3
Month 6 off treatment	30	42	33	44
	(45.5%)	(63.6%)	(50.8%)	(66.7%)
Month 6 on treatment	25	4	8	14
	(37.9%)	(6.1%)	(12.3%)	(21.2%)
Month 12 off treatment	N/A	14 (21.2%)	N/A	5 (7.6%)
Month 12 on treatment	11	6	24	3
	(16.7%)	(9.1%)	(36.9%)	(4.5%)

Survey AASLD/EASL HBV Treatment Endpoints Workshop: respondents n=66 about 45% academic, 45% industry, 10% rest group

TORONTO CENTRE FOR LIVER DISEASE

New Virologic and Host Markers Endpoints?

Current

Virologic Markers

- HBV DNA (q, non q)
- HBsAg (non q)
- HBsAg (q)
- HBeAg

Host Markers

- Anti-HBs (q/non q)
- Anti-HBc (q/non q)
- IgM and IgG
- Standard liver tests
- Imaging

Experimental

Virologic Markers

- HBcrAg (q)
- cccDNA (q)
- Integrated DNA (q)
- HBV RNA

Host Markers

- PD1, Tim3, CTLA4 expression (q) on HBV-specific CD8 T cells by Flow cytometry
- CD127 on HBV-specific T cells by Flow cytometry/ functional assays
- Cytokines (q)
- HBsAg epitopes

- Further standardization and validation of tests needed
- Association with clinical outcome is preferred or needed for further use
- Of interest to dissect mechanism of response in treatments targeting host and virus

HBV cure - Remaining challenges

Basic science

- cccDNA biology
- Regulation of HBV specific immune response

Translational issues

- Standardized assays for cccDNA quantification and epigenetics
- Clinical immunology assays
- Studying viral integration

Clinical trials, drug evaluation, new conceptsTx

- New regulatory path
- Re-defining patient populations, virus characteristics, etc.
- New endpoints linked to cure and treatment strategy
- Combination of investigational drugs
- Safety: major issue (NUCs are safe !)

Revill et al, Nature Reviews Gastroenterol Hepatol 2016

Conclusions

- NA are effective, safe and not so easy to replace
- Shift towards endpoint of true immune control, functional cure and HBsAg seroconversion
- New Viral agents: HBV entry inhibitors, small interfering RNA, capsid inhibitors promising but early in development
- Direct ccc-DNA inhibition may be needed but is difficult to reach
- Immune modification: TLR/RIG-I agonist, therapeutic vaccination, PD1-PDL1 blocking in development
- Combination therapy most likely needed!
- The science is the 'easy part'...getting these agents into people, doing the right trials and getting them approved is a whole other story...

Conclusions

- Quantitative HBsAg and HBVDNA will probably be the most important biomarkers used for endpoint in phase 2 and 3 studies
- Endpoints are different in naive vs suppressed patients
- Endpoints may not have the same meaning for different drugs
- For proof of concept (phase 2) studies different validated endpoints can be used for different compounds depending on their MOA, also to allow future combination therapy

TORONTO CENTRE FOR

Other Questions for HBV Cure studies

- Which patients should and can we treat with new drugs?
 - Should patients be already suppressed on nucs?
 - Is risk/ benefit different depending on therapy, age of patient or phase of disease?
 - Do different phases need different therapies?

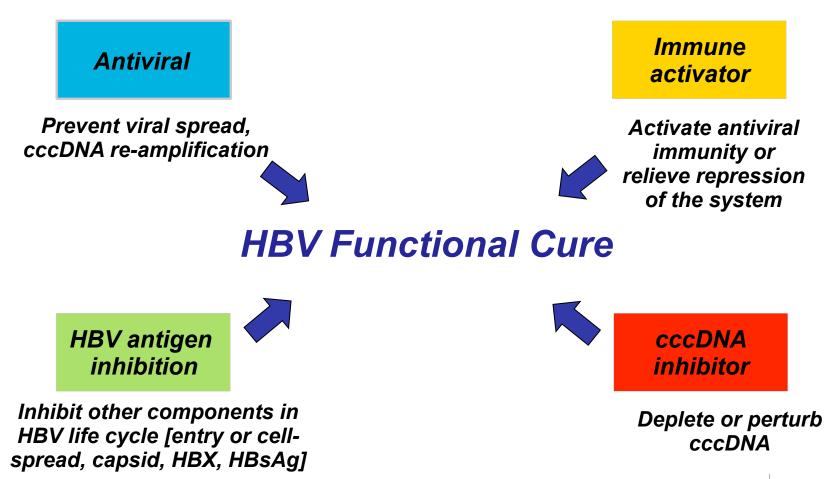
Conclusions

Endpoint selection will differ between phase 2 and 3 studies:

Phase 2

Response can be assessed on- and off-treatment HBsAg decline >1 log, HBsAg loss, HBVDNA decline >1 log or HBVDNA undetectable

Phase 3


Response should be assessed at least 6 months off-treatment HBsAg loss/seroconversion **and** HBVDNA undetectable More definite endpoint reflecting functional cure of HBV infection

Viral Targeting Combos

- Targeting different steps in viral lifecycle may lead to greater/even complete suppression of replication
- May still require long-term therapy to clear existing infected hepatocytes...especially if a leak persists
- Given safety & potency of nucs...logical choice to combine with newer agents
- But could combine any 2 or more viral targeting agents challenging studies (safety, monotherapy for each, different companies...)
- **Key issue**: need assays to detect low level replication below current LOD to determine efficacy

HBV Curative Regimen?

Summary

- Multiple promising therapeutic approaches
- Combining tools to:
 - 1. Improve viral suppression to 'plug the leak' and prevent replenishment of cccDNA
 - 2. Promote immune clearance
- Combination improved antiviral + immunotherapy +/viral protein depletion
- The science is the 'easy part'...getting these agents into people, doing the right trials and getting them approved is a whole other battle...

Chronic HBV: a Dynamic and Heterogeneous Disease

- Phases neither clear nor distinct
- Varying levels of HBsAg even in inactive
- Immunologic status between stages fluid
- A high level of HBV-DNA integration and clonal hepatocyte expansion in young patients even immune tolerant indicating that possible hepatocarcinogenesis even in patients with early stage CHB

Virological Markers to Follow CHB Patients

HBV DNA	Applicable to both HBeAg + and HBeAg-	Standardized assays available
	Not really indicative of sustained immune control	
Quantitative HBeAg	Applicable only in HBeAg +	Commercial assays not currently available
	More indicative of sustained immune control	
Quantitative HBsAg	Applicable to both HBeAg + and HBeAg-	Standardized assays available
	Most indicative of sustained immune control	TORONTO CENTRE FOR LIVER DISEASE
nune control: HBeAg neg and low HBVDNA		

Immune control: HBeAg neg and low HBVDNA

New HBV Treatments

Virology

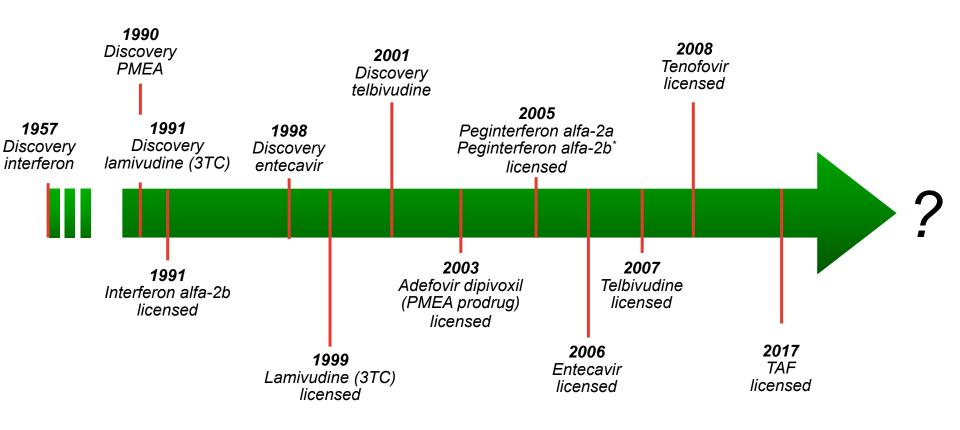
Entry inhibitors cccDNA Degradation/Silencing/Elimination RNA interference (RNAi)/Gene silencing Assembly (Nucleocapsid) inhibitors New Nucleos(t)ide Analogues

Immunology

PEG-IFN Lambda TLR agonists Therapeutic vaccination PD-1, PDL-1 Blocking

Other Potential Viral and Immunologic Endpoints in Phase 2 and 3 Studies

Viral


- Hepatitis B core-related antigen (HBcrAg)
- HBV RNA in serum
- (Quantitative) cccDNA in liver/blood
- HBsAg epitope mapping

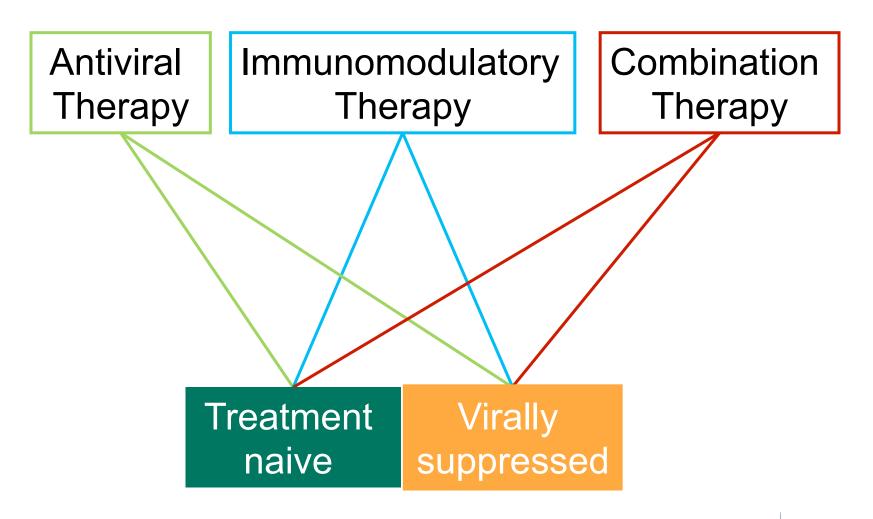
Immunologic

- HBV-specific T & B-cell response
- T-lymphocyte markers
- Expression of inhibitory molecules (PD-1, Tim-4, CTLA4)
- Quantitative anti-HBs
- Anti-HBc (IgM/total)

Advances in HBV treatment

Adapted from: ClinicalCareOptions.com

* Specific countries only


TORONTO CENTRE FOR

Current HBV treatments

- PEG-IFN for few patients, effective in some
- ETV/TDF for most CHB patients, very effective (>95%)
- IFN-NUC for selected patients, TAF available in 2017
- Prevention of clinical decompensation, improvement of portal hypertension, HCC the only complication
- Excellent 5-yr overall and liver-related survival
- New strategies/drugs needed to reduce HCC and to improve HBsAg loss rates

Primary endpoint catered to treatment modality and patient group?

TORONTO CENTRE FOR LIVER DISEASE